8 research outputs found

    Fluctuation based interpretable analysis scheme for quantum many-body snapshots

    Full text link
    Microscopically understanding and classifying phases of matter is at the heart of strongly-correlated quantum physics. With quantum simulations, genuine projective measurements (snapshots) of the many-body state can be taken, which include the full information of correlations in the system. The rise of deep neural networks has made it possible to routinely solve abstract processing and classification tasks of large datasets, which can act as a guiding hand for quantum data analysis. However, though proven to be successful in differentiating between different phases of matter, conventional neural networks mostly lack interpretability on a physical footing. Here, we combine confusion learning with correlation convolutional neural networks, which yields fully interpretable phase detection in terms of correlation functions. In particular, we study thermodynamic properties of the 2D Heisenberg model, whereby the trained network is shown to pick up qualitative changes in the snapshots above and below a characteristic temperature where magnetic correlations become significantly long-range. We identify the full counting statistics of nearest neighbor spin correlations as the most important quantity for the decision process of the neural network, which go beyond averages of local observables. With access to the fluctuations of second-order correlations -- which indirectly include contributions from higher order, long-range correlations -- the network is able to detect changes of the specific heat and spin susceptibility, the latter being in analogy to magnetic properties of the pseudogap phase in high-temperature superconductors. By combining the confusion learning scheme with transformer neural networks, our work opens new directions in interpretable quantum image processing being sensible to long-range order.Comment: 15+3 page

    Plasmons in Two-Dimensional Topological Insulators

    Full text link
    We analyze collective excitations in models of two-dimensional topological insulators using the random phase approximation. In a two-dimensional extension of the Su-Schrieffer-Heeger model, edge plasmonic excitations with induced charge-density distributions localized at the boundaries of the system are found in the topologically non-trivial phase, dispersing similarly as one-dimensional bulk plasmons in the conventional Su-Schrieffer-Heeger chain. For two-dimensional bulk collective modes, we reveal regimes of enhanced inter-band wave function correlations, leading to characteristic hardening and softening of inter- and intra-band bulk plasmonic branches, respectively. In the two-dimensional Haldane Chern insulator model, chiral, uni-directional edge plasmons in nano-ribbon architectures are observed, which can be characterized by an effective Coulomb interaction cross section. Bulk collective excitations in the two-dimensional Haldane model are shown to be originated by single-particle band structure details in different topological phases

    Control of Plasmons in Doped Topological Insulators via Basis Atoms

    Full text link
    Collective excitations in topologically non-trivial systems have attracted considerable attention in recent years. Here we study plasmons in the Su-Schrieffer-Heeger model whose low-energy electronic band is only partially filled, such that the system is metallic. Using the random phase approximation, we calculate the intra- and inter-band polarization functions and determine the bulk plasmonic dispersion from the dielectric function within the random phase approximation. We find that the sub-lattice basis states strongly affect the polarization functions and therefore control the system's plasmonic excitations. By varying the real-space separation of these local orbitals, one can thus selectively enhance or suppress the plasmonic energies via a tunable trade-off between intra-band and inter-band screening processes. Specifically, this mechanism can be used to stabilize undamped high energy plasmons that have already been reported in related models. We propose scenarios on how to control and observe these effects in experiments

    Parity effects and universal terms of O(1) in the entanglement near a boundary

    Full text link
    In the presence of boundaries, the entanglement entropy in lattice models is known to exhibit oscillations with the (parity of the) length of the subsystem, which however decay to zero with increasing distance from the edge. We point out in this article that, when the subsystem starts at the boundary and ends at an impurity, oscillations of the entanglement (as well as of charge fluctuations) appear which do not decay with distance, and which exhibit universal features. We study these oscillations in detail for the case of the XX chain with one modified link (a conformal defect) or two successive modified links (a relevant defect), both numerically and analytically. We then generalize our analysis to the case of extended (conformal) impurities, which we interpret as SSH models coupled to metallic leads. In this context, the parity effects can be interpreted in terms of the existence of non-trivial topological phases

    Topological Protection of Coherence in Noisy Open Quantum Systems

    Full text link
    We consider topological protection mechanisms in dissipative quantum systems in the presence of quenched disorder, with the intent to prolong coherence times of qubits. The physical setting is a network of qubits and dissipative cavities whose coupling parameters are tunable, such that topological edge states can be stabilized. The evolution of a fiducial qubit is entirely determined by a non-Hermitian Hamiltonian which thus emerges from a bona-fide physical process. It is shown how even in the presence of disorder winding numbers can be defined and evaluated in real space, as long as certain symmetries are preserved. Hence we can construct the topological phase diagrams of noisy open quantum models, such as the non-Hermitian disordered Su-Schrieffer- Heeger dimer model and a trimer model that includes longer-range couplings. In the presence of competing disorder parameters, interesting re-entrance phenomena of topologically non-trivial sectors are observed. This means that in certain parameter regions, increasing disorder drastically increases the coherence time of the fiducial qubit

    Bulk topological signatures of a quasicrystal

    Full text link
    We show how measuring real space properties such as the charge density in a quasiperiodic system can be used to gain insight into their topological properties. In particular, for the Fibonacci chain, we show that the total onsite charge oscillates when plotted in the appropriate coordinates, and the number of oscillations is given by the Chern number of the gap in which the Fermi level lies. We show that these oscillations have two distinct interpretations, obtained by extrapolating results from the two extreme limits of the Fibonacci chain -- the valence bond picture in the strong modulation limit, and perturbation around the periodic chain in the weak modulation limit. This effect is found to remain robust at moderate interactions, as well as in the presence of disorder. We conclude that experimental measurement of the real space charge distribution can yield information on topological properties in a straightforward way.Comment: 8 pages, 6 figure

    Quantifying hole-motion-induced frustration in doped antiferromagnets by Hamiltonian reconstruction

    Get PDF
    Unveiling the microscopic origins of quantum phases dominated by the interplay of spin and motional degrees of freedom constitutes one of the central challenges in strongly correlated many-body physics. When holes move through an antiferromagnetic spin background, they displace the positions of spins, which induces effective frustration in the magnetic environment. However, a concrete characterization of this effect in a quantum many-body system is still an unsolved problem. Here we present a Hamiltonian reconstruction scheme that allows for a precise quantification of hole-motion-induced frustration. We access non-local correlation functions through projective measurements of the many-body state, from which effective spin-Hamiltonians can be recovered after detaching the magnetic background from dominant charge fluctuations. The scheme is applied to systems of mixed dimensionality, where holes are restricted to move in one dimension, but SU(2) superexchange is two-dimensional. We demonstrate that hole motion drives the spin background into a highly frustrated regime, which can quantitatively be described by an effective J1–J2-type spin model. We exemplify the applicability of the reconstruction scheme to ultracold atom experiments by recovering effective spin-Hamiltonians of experimentally obtained 1D Fermi-Hubbard snapshots. Our method can be generalized to fully 2D systems, enabling promising microscopic perspectives on the doped Hubbard model

    Quantifying hole-motion-induced frustration in doped antiferromagnets by Hamiltonian reconstruction

    No full text
    Abstract Unveiling the microscopic origins of quantum phases dominated by the interplay of spin and motional degrees of freedom constitutes one of the central challenges in strongly correlated many-body physics. When holes move through an antiferromagnetic spin background, they displace the positions of spins, which induces effective frustration in the magnetic environment. However, a concrete characterization of this effect in a quantum many-body system is still an unsolved problem. Here we present a Hamiltonian reconstruction scheme that allows for a precise quantification of hole-motion-induced frustration. We access non-local correlation functions through projective measurements of the many-body state, from which effective spin-Hamiltonians can be recovered after detaching the magnetic background from dominant charge fluctuations. The scheme is applied to systems of mixed dimensionality, where holes are restricted to move in one dimension, but SU(2) superexchange is two-dimensional. We demonstrate that hole motion drives the spin background into a highly frustrated regime, which can quantitatively be described by an effective J 1–J 2-type spin model. We exemplify the applicability of the reconstruction scheme to ultracold atom experiments by recovering effective spin-Hamiltonians of experimentally obtained 1D Fermi-Hubbard snapshots. Our method can be generalized to fully 2D systems, enabling promising microscopic perspectives on the doped Hubbard model
    corecore